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Abstract

Many learning rules minimize an error or energy function, both in supervised and
unsupervised learning. We review common learning rules and their relation to gra-
dient and stochastic gradient descent methods. Recent work generalizes the mean
square error rule for supervised learning to an Ising-like energy function. For a
specific set of parameters, the energy and error landscapes are compared, and con-
vergence behavior is examined in the context of single linear neuron experiments.
We discuss the physical interpretation of the energy function, and the limitations
of this description. The backpropgation algorithm is modified to accommodate
the energy function, and numerical simulations demonstrate that the learning rule
captures the distribution of the network’s inputs.

1 Gradient and Stochastic Gradient Descent

A learning rule is an algorithm for updating the weights of a network in order to achieve a particular
goal. One particular common goal is to minimize a error function associated with the network, also
referred to as an objective or cost function.

Let Q(w) denote the error function associated with a network with connection weights w. A first
approach to minimize the error is the method of gradient descent, where at each iteration a step is
taken in the direction corresponding to −∇Q(w). The learning rule that follows is

w := w − η∇Q(w), (1)

where η is a constant parameter called the learning rate. Consider being given a set of n observations
{xi, ti}, where i = 1, 2...n. Each observation consists of inputs x into the network and correspond-
ing outputs t. A particular case of gradient descent may be formulated for an error function of the
form

Q(w) =

n∑
i=1

Qi(w), (2)

where Qi(w) is the error corresponding to the i-th observation. In this case, the learning rule
becomes

w := w − η
n∑

i=1

∇Qi(w). (3)

For most error functions, this standard (or batch) gradient descent method is guaranteed to converge
to a local minimum, provided one exists and the learning rate is small. Furthermore, it does so along
the fastest route, taking steps at every iteration perpendicular to the contour lines.

A key challenge is computational power - evaluating the sum in 3 may be computationally intensive,
particularly for large training sets. A more economical method for minimizingQ is that of stochastic
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(or on-line) gradient descent. At each iteration, the gradient ofQ(w) is approximated by the gradient
of the single observation’s associated error, Qi(w). The learning rule at each step becomes

w := w − η∇Qi(w), (4)

where we implicitly iterate over the data set, with the possibility of numerous passes. While at
each iteration, the algorithm takes a step in a direction perpendicular to the contour lines for that
observations error function Qi, it does not necessarily move perpendicular to the contour lines of
Q. Furthermore convergence to the minimum of Q is not guaranteed, further demonstrated in Sec-
tion 2.1.

1.1 Mean Square Error (MSE)

A logical choice for the error function is the mean square error,

E(w) =

n∑
i=1

Ei(w) =
1

2

n∑
i=1

||ti − oi(w)||2, (5)

where ti is the expected outcome of the network for the i-th observation, and oi(w) is the actual
output of the network, and ||z||2 denotes the 2-norm [2].

As an illustrative example, consider the case of a network consisting of a single linear neuron. Let
xi denote the vector of inputs, w the weights corresponding to each input, and hi = w>xi the
weighted sum of neuron’s inputs. For simplicity, assume a linear activation function g(hi) = hi
such that the actual output of the neuron is yi = g(hi) = hi = w>xi.

Given a set of n inputs and expected outputs {xi, ti}, the mean square error thus becomes

E(w) =

n∑
i=1

Ei(w) =
1

2

n∑
i=1

(ti −w>xi)
2. (6)

Note that since ti, yi ∈ R we may drop the absolute value in 5. The learning rule from the stochastic
gradient descent method 4 becomes

w := w + η(ti −w>xi)xi. (7)

2 Energy Cost Function

Begin by expanding the MSE for a single observation of a linear neuron as

Ei(w) =
1

2
(ti −w>xi)

2 =
1

2
t2i − tiw>xi +

1

2
w>xix

>
i w. (8)

Define a similar error function

Ei(w) = −ctiw>xi − bw>Vw, (9)

where c, b ∈ R are constants and V ∈ Rn×n. Note that for c = 1, b = −1/2,V = xix
>
i , we

recover the MSE function, up to a constant term t2i /2 which does not affect the learning rule [6].

The learning rule associated with this error function is

w := w + η
[
ctixi + b(V + V>)w

]
, (10)

derived using 4 and the identity ∂x>Bx/∂x = (B + B>)x.

This work explores a particular choice for the parameters b, c,V, and it’s relation to the MSE rule.
As before for the MSE, let c = 1, b = −1/2. Note that the covariance matrix for general random
vector x with mean x is

Σxx = 〈xx>〉 − xx>. (11)

As we iterate over data pairs {xi, ti} in stochastic gradient descent, at each step we add a correction
term to the weights according to 10. This suggests that if the covariance matrix Σxx were known,
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an intuitive choice for the learning rule is to replace V = xx> by V = 〈xx>〉 = Σxx + xx>. The
error function and learning rule then become

Ei(w) = −tiw>xi +
1

2
w>

(
Σxx + xx>

)
w, (12)

w := w + η

[
tixi −

1

2
(Σxx + Σ>xx + 2xx>)w

]
. (13)

This similar form has been discussed previously [6] - we briefly depart to clear up several mis-
conceptions. It has been pointed out that this error for resembles the energy of the Ising model in
statistical mechanics. This view is limited in several points. In 9, the analogous role of the state of
the system is played by w, where generally elements wi ∈ R, while in the Ising model the state is
described by a vector σ where σi ∈ {−1, 1}. This suggests that an analogy to a continuous spin Ising
model may be more appropriate. The constants c, b would play the analogous roles of the magnetic
moment and spin-spin coupling strength, respectively, and tixi in the first term the local magnetic
field. The role of the matrix V , however, presents a refutation of this analogy. In the Ising model,
the structure of the matrix designates which spins in the lattice couple to another. Several conditions
are physically imposed upon the matrix, in particular that it is symmetric (spins cannot couple in
only one direction) and that diagonal elements are zero (spins cannot couple with themselves). The
choice of V = xix

>
i violates the second condition, and in general the symmetry condition need not

be met.

Nonetheless, the remainder of this work maintains the title of energy function for 9 solely for clarity,
rather than a physical interpretation.

It has been suggested [6] that Hebb’s and Oja’s rules may be recovered for particular choices of
b, c,V. However, this claim is based on poor terminology, as these are unsupervised learning rules,
while the energy form is clearly a supervised method.

The true Hebb’s rule may indeed be understood as maximizing the variance of the output, or iden-
tically minimizing E(w) = −〈(w>x)2〉 [2]. On the other hand, it has been extensively shown
that Oja’s rule may not be expressed as the gradient of any function [7]. As a brief summary, re-
call that a conservative vector field satisfies ∂(∆w)i/∂wj = ∂(∆w)j/∂wi. Oja’s learning rule is
∆w = (x − wy)y. Since ∂(yxi − y2wi)/∂wj = xixj − 2wiyxj − δijy2, the last condition is
clearly not met. Consequently the field is not conservative and equivalently can not be interpreted
as the gradient of some function [2].

2.1 Single Neuron Comparisons of the Energy and MSE Functions

As a simple comparison of the energy 12 and the MSE 6 error functions, consider the case of a
single linear neuron with two inputs, i.e. x,w ∈ R2. Given a large set of observations {xi, ti},
consider first the case where there exists a unique solution w̃ in weight space where the MSE is
zero. In the implementation, this corresponds to generating the expected outputs from given inputs
as ti = xi,0w̃0 + xi,1w̃1 for some fixed w̃.

Figure 1 shows contour plots of the energy and MSE surfaces in w-space. The MSE surface for a
single observation pair is shown in Figure 1a, and is the familiar trench shape. Summing over all
observations to attain the total MSE function yields the bowl shape shown in Figure 1b. A sample
stochastic gradient descent path is shown to converge to the exact solution, indicated by the green
‘X’. Given sufficient passes over the data set, any desired precision may be attained. The energy
function surface for the same single observation pair is shown in 1c, and is a bowl shape similar to
the total error function. However, while the total function in 1d has a similar minimum to the MSE
function, the individual observation’s minima indicated by the red ‘X’ do not necessarily coincide
the total minimum in the green. This leads to the non-converging behavior shown for the stochastic
gradient descent.

As a second case, consider a data set that consists of two subsets of observations, each with a unique
zero MSE solution as previously. Figure 2a shows the total MSE function’s contour plot. Indicated
is the minimum of the energy function, and the solutions to the two subsets. The stochastic gradient
descent shows that rather than converge to the total MSE function’s minimum, the solution oscillates
between the solutions of the two subsets as the algorithm iterates over data pairs belonging to a
random one of these subsets. Figure 2b shows the same behavior for the total energy function.
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Figure 1: The error surfaces in weight space for a single linear neuron with two inputs. The obser-
vations {x, t} have a single solution in weight space with zero MSE. (a) A single observation x0, t0
for the MSE function, corresponding to a trench. The green ‘X’ denotes the minimum of the total
MSE function. (b) The total MSE function for all data sets. A sample stochastic gradient descent
path from a random starting point is shown. (c) As (a), for the energy function. The red ‘X’ denotes
the minimum of this observations energy function. (d) As (b), for the energy function.

The combination of these two simulations demonstrates that while the energy function will not
necessarily converge to the same point as the MSE function, it generally exhibits oscillatory behavior
in the same neighborhood in weight space. Furthermore, the bowl nature of the energy function may
be exploited for a faster decrease toward the minimum by avoiding slow crawls along the trench as
in the case of the MSE.

3 Backpropagation

3.1 Brief Review

A common application of gradient descent methods is to the backpropagation algorithm [2, 4, 5].
Altering the set of weights in a network to attain a desired result is generally difficult, and increases
substantially with the size of the network and the complexity of its topology.

In the present work, a simplified procedure of the backpropagation algorithm is reviewed and its
application discussed for the energy function. A more general treatment is deferred to other litera-
ture [2].

Begin by considering a general network as shown in Figure 3, consisting of an input layer, an output
layer, and any number of hidden layers in-between. Associate some weight function Q(w) with
the network, where w is the vector of all connection’s weights. Analogous to the case of a single
neuron, the solution of the backpropgation algorithm is the set of weights which minimizes Q. The
training of the network is based on a set of data pairs {x, t} with x being the inputs fed into the
network in the input layer, and t the expected outputs. The backpropagation is given in Algorithm 1,
and proceeds by iterating over the set of observation pairs (x, t). At each iteration:
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Figure 2: Total error surfaces for a set observations {x, t} that consists of two subsets, each with
a single solution in weight space with zero MSE. The green ‘X’ denotes the minimum of the total
error function. The red ‘X’ denote the exact solutions of the two subsets. (a) The total MSE function
for all data sets. A sample stochastic gradient descent path from a random starting point is shown.
(b) As (a), for the energy function.

Algorithm 1 Backpropagation

1: procedure BACKPROPAGATION
2: for each observation pair (x, t), do
3: Feed-forward: Feed the input x into the network, store all outputs oi.
4: Error at the output layer: Calculate the error δj at the output layer δjoi = ∂Q

∂wij
.

5: Backpropagate to hidden layers: Calculate the hidden layer’s errors as δh =
∑

q whqδq .
6: Weight updates: Update the weights of all connections as wij := wij − ηoiδj .

1. Feed-forward: The input x is fed into the input layer, and forward propagate through the
network. Store the output of each neuron i as oi.

2. Error at the output layer: The error δj of the j-th neuron in the output layer is computed
as

oiδj =
∂Q

∂wij
, (14)

where wij is the weight from the i-th neuron to the j-th neuron, and oi is the output of the
i-th neuron, or conversely, the input into the j-th.

3. Backpropagate to the hidden layers: Since the expected output of neurons in the hidden
layers is not known, it is instead estimated by errors in the layer closer to the output (in the
case of the final hidden layer, the output layer). If whq is the connection from the h-th to
the q-th neuron in the hidden layer, then the error is estimated as

δh =
∑
q

whqδq (15)

4. Weight updates: Update the weights of each connection as

wij := wij − ηoiδj (16)

3.2 MSE and Energy Formalism

In the remaining text, consider the case of a network of linear neurons, where the output is given as
the weighted sum of the inputs yi = w>i xi where the elements xji correspond to the j-th input into
the i-th neuron with weight wji.

The gradient of the MSE for the i-th neuron in the output layer is given as

∇wiEi(wi) = xi(w
>
i xi − ti). (17)
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Figure 3: The neural network used for the Iris dataset. The input layer has four input neurons, each
hidden layer has four neurons, and the output layer has three. One and three hidden layer cases were
examined in the simulations.

Identifying this with 14, identify the error as
δi = w>i xi − ti. (18)

Recall the gradient of the energy function is

∇wi
Ei(wi) = −xiti +

1

2
(Σxixi

+ Σ>xixi
+ 2xi xi

>)wi. (19)

A difficulty presents itself in defining an error δi as before, since it is not possible to factor xi out
of this expression. However, in order to backpropagate the error to the hidden layers, a definite
expression is required. One work-around is to define an inverse for the vector xi as the Moore-
Penrose pseudoinverse

x+ ≡ x>

x>x
. (20)

Note in particular that x⊗ x+ = I where I is the identity matrix of appropriate dimension.

In light of this assumption, write

∇wiEi(wi) = xi

(
1

2
x+
i (Σxixi + Σ>xixi

)wi − ti
)
.

and consequently define the error as

δi =
1

2
x+
i (Σxixi

+ Σ>xixi
)wi − ti. (21)

The validity of this approach is considered further in Section 5. The final rules for updating the
weights of the i-th neuron with inputs xi and input weights wi are

wi := wi − ηxi

{
w>i xi − ti for MSE method,
1
2x

+
i (Σxixi + Σ>xixi

)wi − ti for energy method.
(22)

3.3 Bootstrapping the Covariance Matrix

Calculating the error from the gradient of the energy function 9 requires the covariance matrix of the
inputs into the neurons in the output layer, that is, the outputs of neurons in the final hidden layer.
While the inputs at the input layer of the network are known, the inputs into the final output layer are
not. The naive approach of propagating the entire set of inputs through the network may be hindered
if the size of data set is large, or the network contains a large number of hidden layers. Furthermore,
the calculation needs to be performed after every weight update, as the outputs in the final layer will
have changed.

A slight relaxation in precision allows for a more elegant approach using bootstrapping. Algorithm 2
outlines the procedure used to estimate the input covariance at the output layer. A total of Nr sets is
constructed, each consisting of nr random input vectors x. The choice of Nr and nr clearly dictates
the covariance obtained, and their choice is discussed in Section 4. For each set, the input vectors
are in turn fed forward through the network to obtain the input vectors to the output neurons, from
which the covariance matrix for the set is calculated. Finally, the true covariance is approximated as
the mean of the set of covariances {σi}, where i = 1, 2, . . . , Nr.
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Algorithm 2 Bootstrapping for Output Layer Covariance

1: procedure BOOTSTRAPPING
2: Draw Nr sets of input vectors {x}, each set of size nr
3: for each set {x}i, i = 1, 2, . . . , Nr, do
4: for each element xj , j = 1, 2, . . . , nr, do
5: Forward propagate xj to the input into the final neuron yj

6: Compute the covariance matrix σi of the set {yj}
7: Approximate the true covariance as σ = mean({σi})

4 Numerical Simulations

The backpropagation algorithm was applied to learn the Iris data set [1]. The dataset consists of 150
observations, each with four attributes that denote properties of the iris flower, and a single output
as classification of one of three types of iris flower. The four input attributes are approximately
Gaußian distributed.

The network used is shown in Figure 3. The input layer has four input neurons, each hidden layer
has four neurons, and the output layer has three. One and three hidden layer cases were examined in
the simulations. The network is fully connected in that the output from each neuron is fed into the
input of each neuron in the next layer. Each output neuron represents a single flower type, with the
ideal outputs being represented by outputs (n1, n2, n3) = (0, 0, 1), (0, 1, 0) or (1, 0, 0) for the three
output neurons n1, n2, n3, with each combination being assigned to a single classification of iris.

The network is run over 100 randomly selected training data pairs, and tested on 50 randomly se-
lected test pairs. The parameters used in the bootstrapping were Nr = nr = 5, and the learning rate
was set at η = 10−3. However, these parameters were not finely tuned to increase the performance
of the network, but rather focusing on the comparison of the energy and MSE error functions. A
future analysis to yield optimal results would utilize an activation function to create a network of
binary neurons. Presently, the use of linear neurons is of interest for the output distributions.

Figure 4 shows histograms of the three output neurons for the MSE and energy error functions. The
output of the energy function more closely resembles a Gaußian distribution, particularly for the
single hidden layer case. The use of the covariance matrix in the learning rule captures some of
the overall distribution of the input data. Ideally, the bootstrapping method then estimates a similar
distribution at the output layer, leading to a learning rule that attempts to mimic the input distribution.
For a greater number of hidden layers shown in the right panel of Figure4, the similarity between the
MSE and energy distributions increases. This is likely due the estimation of the covariance matrix,
and is further discussed below.

Figure 5 shows the error of the output neurons for each observation |(n1, n2, n3) − (t1, t2, t3)|,
where (t1, t2, t3) refers to the ideal output of the output neurons for the data observation. While
any quantitative comparisons are unclear, it can be seen that the error for the two methods follows
a similar trend, i.e. is of similar magnitude for the same observation pair. This indicates that the
energy function considered balances capturing the Gaußian nature of the inputs with minimizing the
square of the error.

5 Discussion

The poor performance of the network in classifying the Iris data set is primarily a result of work-
ing with linear neurons. The classification problem is more suited for binary neurons, which may
attained by implementing an activation function. However, this limits the capacity to compare the
MSE and energy cost function, and is therefore generally optimizing the performance is left for
future analysis.

The validity of several assumptions need to be addressed. Since the inverse of a vector is not
uniquely defined, the Moore-Penrose pseudoinverse was used to define the error associated with
the energy cost function. This inverse is unique and guaranteed to exist, and therefore constitutes a
reasonable choice. However, it is one choice out of many for the error, and may not be the optimal.
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Figure 4: Histograms of the three output neurons for test pairs. Shown for networks with one hidden
layer (left two panels) and three hidden layers (right two panels).
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Figure 5: Errors of each output neuron |ti − oi| for a random order of test pairs.

A bootstrapping method was used to estimate the covariance of the inputs to the output neurons.
Since the numerical tests were performed on networks with one and three hidden layers, it is ex-
pected that this approximation is reasonably accurate, despite the size parameters Nr and nr not
being finely tuned to optimal values. However, it is expected that the approximation’s performance
decreases as the size of the network grows. Alternative approximations [3] to estimate the covariance
matrix may lead to better results.

The current study is primarily qualitative in examining the results of backpropagation algorithm.
One possibility for future analysis for quantifying these outcomes is to use the Kolmogorov-Smirnov
to compare the distributions obtained to the expected.

6 Conclusions

The MSE learning rule is a popular example of training a neural network by minimizing an asso-
ciated error function. Here we show a related form which uses the covariance of the input data to
capture the structure of the data and expected solutions. Applied to the backpropagation algorithm,
the network balances the Gaußian nature of the input data with minimizing the MSE. We antici-
pate that further optimizations may lead to modified backpropagation algorithms that preserve the
behavior of the networks inputs, and that are capable of learning over smaller training data sets.
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